



NOTES ON THE THEORY
OF DYNAMIC PROGRAMMING—V
MAXIMIZATION OVER DISCRETE SETS

Ву

Richard Bellman

P-721 9H

Revised 12 December 1955

Activity of Its not the

Summary

The theory of dynamic programming is applied to a class of problems involving maximization over discrete sets. The solution is made to depend on the solution of a class of functional equations.

NOTES ON THE THEORY OF DYNAMIC PROGRAMMING—IV MAXIMIZATION OVER DISCRETE SETS

ol. Introduction

A problem of frequent occurrence is that of determining the maximum of a function $F(x_1,x_2,\ldots,x_N)$ subject to the constraints

(1) (a)
$$G_1(x_1,x_2,...,x_N) \leq c_1, i=1,2,...,K$$

(b)
$$x_1 \in S_1$$
,

where S_1 is a discrete, usually finite, set. The most important case is that where each S_1 is a finite set of integers, and an interesting sub-case is that where $x_i = 0$ or 1.

A particular class of problems of this type concerns the maximization of

(2)
$$F(x) = \sum_{i=1}^{N} F_i(x_i),$$

over the set of x, constrained by the relations

(3) (a)
$$\sum_{j=1}^{N} G_{i,j}(x_j) \leq c_i, i=1,2,...,K$$

(b)
$$x_1 \in S_1, 1=1,2,...,K$$
,

with
$$G_{ij}(x_j) \ge 0$$
 for $x_j \in S_j$.

Even in the case where the F_1 and G_{ij} are linear functions of the \mathbf{x}_1 , this problem at the moment escapes any of the standard computational algorithms of linear programming, such as the simplex method of G Dantzig.

We shall show that this problem may be treated by means of the functional equation technique of the theory of dynamic programming, [1], and that this technique yields a very simple computational solution whenever the number of constraints is small.

We shall also indicate the application of the method to a problem involving mutually exclusive activities. Here we have an additional constraint of the form

(4)
$$x_1 x_{1+1} = 0.$$

62. Functional Equation

Let us define the sequence of functions

(1)
$$f_N(c_1,c_2,...,c_K) = \max_{\{x\}} \sum_{i=1}^{N} F_i(x_i),$$

where the x_1 are subject to the constraints of (1.3). Then

(2)
$$f_1(c_1,c_2,...,c_K) = Max F_1(x_1)$$

where

(3) (a)
$$G_{11}(x_1) \leq c_1, \ldots, G_{K1}(x_1) \leq c_K$$
,
(b) $x_1 \in S_1$.

Applying the principle of optimality, we obtain the recurrence relation

(4)
$$f_N(c_1,c_2,...,c_K)=Max [P_N(x_N)+f_{N-1}(c_1-G_{1N}(x_N),...,c_K-G_{KN}(x_N))],$$

where

(5) (a)
$$G_{1N}(x_N) \leq c_1, \dots, G_{KN}(x_N) \leq c_K$$

(b)
$$x_N \in S_N$$
.

63. Example

Consider the problem of determining the maximum of $L_N(x) = \sum_{i=1}^{N} a_i x_i$

subject to the constraints

(1) (a)
$$\sum_{i=1}^{N} b_i x_i \leq c$$
,

(b)
$$x_1 = 0 \text{ or } 1$$
,

where $a_1,b_1 > 0$.

Here

(2)
$$f_1(c) = a_1, c \ge b_1,$$

= 0, c < b₁,

and

(3)
$$f_{N}(c) = \max_{X_{N} = 0,1} [a_{N}x_{N} + f_{N-1}(c - b_{N}x_{N})], c \ge b_{N}$$
$$= f_{N-1}(c), c < b_{N}.$$

§4. Discussion

The functions $f_N(c)$ may now be computed with ease, on either a digital or hand computer, depending upon the size of the system, starting with the known value $f_1(c)$.

To give an example, suppose that N = 50 and c = 200, with the a_1 , b_1 integers ranging between 1 and 10. The naive approach involves the testing of 2^{50} sets of values, i.e., all possible combinations of accept or reject. Since $2^{50} \cong 10^{50}(.30) = 10^{4.5}$, this is a considerable task. Conventional linear programming techniques fail because of the restriction that the x_1 be integral. For the case where N = 50, a roundoff of the linear programming solution may cause considerable error.

Using the above method, we must compute 50 functions $\{f_N(c),\}$ each containing 200 entries, $c=1,2,3,\cdots$. If the a_1 and b_1 are irrational, we may have to refine the c-grid in order not to introduce round-off errors of importance. An important point to note is that doubling the size of N will double the computational time, which is to say that the time required for computing the solution in this fashion is proportional to N, rather than dependent upon N in some exponential fashion, as in ordinary search methods.

In return for the labor expended in computing the sequence $\{f_N(c),\}$ one has all the advantages of a "sensitivity analysis". It is easy to trace the influence of c and N upon the maximum value and the behavior of the maximizing $x_N = x_N(c)$.

Let us now discuss in more detail the remark we made in the introduction stating that this technique is, at the present time, restricted to problems involving a small number of constraints.

Consider a cargo-handling problem in which we have a number of items possessing values $\mathbf{v_i}$, weights $\mathbf{w_i}$ and sizes $\mathbf{s_i}$. We wish to maximize the value of the cargo carried, subject to weight restriction w and a volume restriction s.

The mathematical problem is that of maximizing

(1)
$$L(x) = \sum_{i=1}^{N} x_i v_i$$

subject to the restrictions

(2) (a)
$$\sum_{i=1}^{N} x_i w_i \leq w$$
,

(b)
$$\sum_{i=1}^{N} x_i s_i \leq s$$

(c)
$$x_1 = 0, 1, 2, \cdots$$

refining

(3)
$$f_N(w, s) = Max L(x),$$

we readily obtain

(4)
$$f_1(w, s) = v_1 \text{ Min } ([\frac{w}{w_1}], [\frac{s}{s_1}]),$$

$$f_k(w, s) = \text{Max } [v_k x_k + f_{k-1}(w - x_k w_k, s - x_k s_k)],$$

where R is the set

(5)
$$x_k = 0, 1, 2, \dots, Min ([\frac{w}{w_k}], [\frac{s}{s_k}]).$$

Taking the parameters w_1 , s_1 and v_1 to be integers, we will, in general, be required to N functions of two variables, tabulated at the points of å grid $w = 0, 1, 2, \dots, \overline{W}$, $s = 0, 1, 2, \dots, S$. If W and S are of the order of magnitude of 100, this requires 10^4 values. This is still within the capability of modern machines.

It is clear, however, that one additional constraint of the same type puts us in the 10^6 range. This exceeds the capability of any present day machine.

If, on the other hand, there are a large number of constraints, each with a small range, then the method is useful.

55. Example Mutually Exclusive Activities

Consider the problem of the preceding section under the additional constraint

(1)
$$x_1x_{1+1} = 0$$
, $1 = 1, 2, \dots, N-1$

Define the sequence of functions

(2)
$$f_{N}(c, b) = \max_{\{x\}} \sum_{i=1}^{N} a_{i}x_{i}$$

where the x_1 are subject to the constraints

(3) (a)
$$x_n \cdot b = 0$$
, $b = 0$ or 1
(b) $\sum_{i=1}^{N} b_i x_i \le c$.

Then we have the recurrence relation

(4)
$$f_{N}(c, b) = \max_{X_{N}=0,1} [a_{N}x_{N} + f_{N-1}(c - b_{N}x_{N}; x_{N})]$$

To determine the solution we must compute the double sequence $\{f_N(c, 0), f_N(c, 1)\}$.

References

1. Bellman, R., "The Theory of Dynamic Programming", Bull. Amer. Math. Soc., Vol. 60 (1954), pp. 503-516.